Importance of Satellite Data in space weather modelling

Olugbenga Ogunmodimu, Farideh Honary
Space Plasma Environment and Radio Sciences
Group Lancaster University, UK.

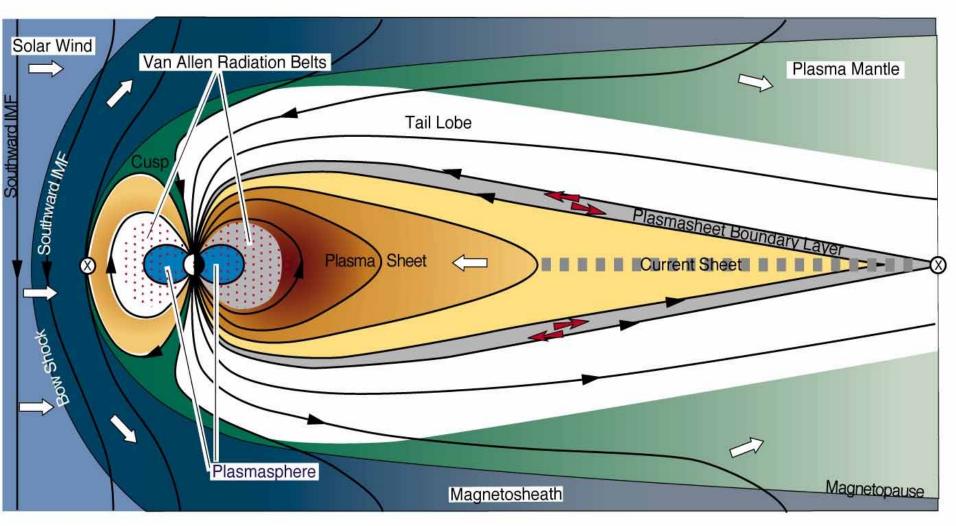
o.ogunmodimu@lancaster.ac.uk

Graz Presentation©2012

Contents

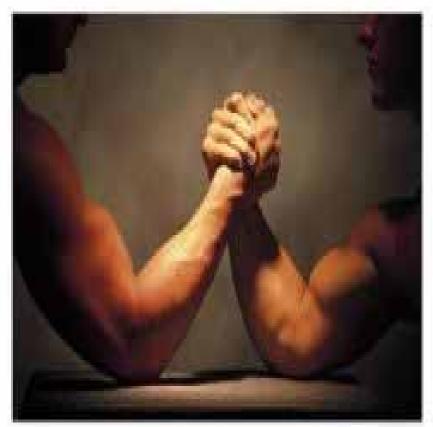
Introduction & Objectives

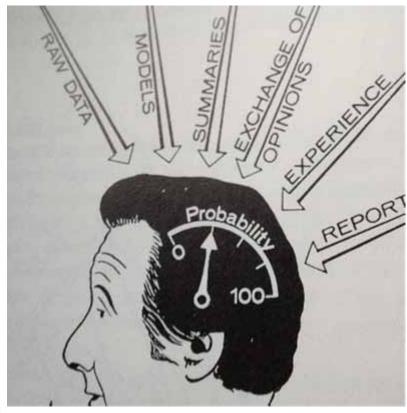
- Space weather Dynamics: Slogan and Physics
- Solar Terrestrial Environment
- Quantifying Space Weather phenomenon : Satellite data Cum Image observations
- Data-Model-Analysis Chart
- Data Vs. Model
 - Example: Previous analysis and deductions
 - Present Research
 - Conclusion


Space Weather Dynamics

Generation Propagation Interaction **Shock Waves** Magnetosphere/Earth **Expelled Plasma and Magnetic Fields** SUN **Accelerated Particles** Radio Emission

Regions of the Magnetosphere


Sun-Earth Environment


- ☐ The sun Earth environment is made of couplings:
- ✓ Solar Interior-Solar Atmosphere
- ✓ Solar Atmosphere-Solar Wind
- ✓ Solar Wind-Magnetosphere
- √ Magnetosphere-Ionosphere
- ✓ Ionosphere-Atmosphere

Data VS Model!

Models

- Ways of making sense out of data (J.Hughes)
- > Inputs are usually:
- ✓ Time (MLT or UT),
- ✓ Geographic location,
- √ solar activity factors
- ✓ Space borne and ground based data

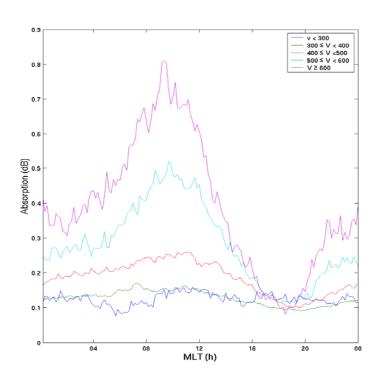
Data

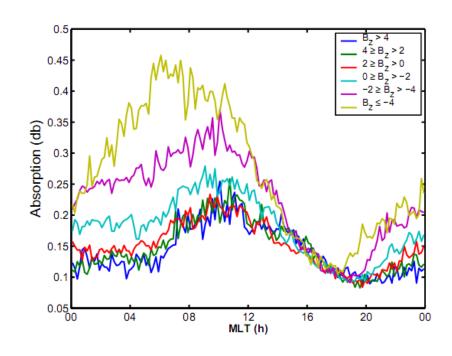
- >Serve as inputs to scientific models, gives sense to model
- ➤ Informs on space situation awareness
- ➤ Concerns: Sources, Accuracy, Calibration and Analysis.

Absorption: What it is and why we care!

- it is an indicator of an enhancement of electron density in the D-region of the ionosphere. Mostly due to electrons with energy in excess of ~30 keV precipitating from the magnetosphere.
- Radio propagation is via the ionosphere and absorption mutilates.

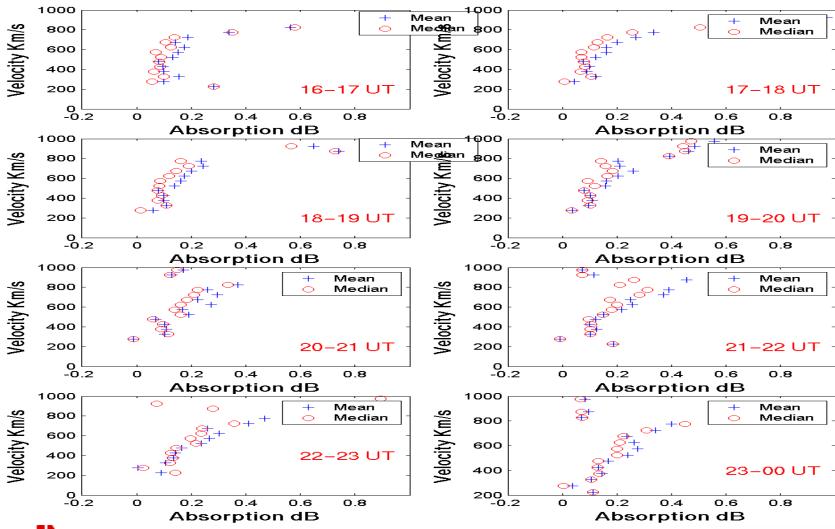
Absorption Type	Occurance Time	Causes	Index of pre- diction	Precursor	Expected Intensity	Latitude	Duration
SCNA	Anytime	SID(Enhanced changes in solar wind)	f.10	solar flare	not yet known	Auroral zone	several min- utes
SCA & SIA	Day time	Sudden changes in solar wind pressure	Solar wind pa- rameters	Geomagnetic SSC	0.1-7dB	Auroral zone	Few tens of minutes
PCA	Day time	Ionization in the D- region	pfu & SSN	Major solar flare	less than 1dB weak, less than 2dB Medium, greater than 2dB Strong	Polar cap &Au- roral zone	Several days 1-2 weeks
Midnight auroral Absorption	Midnight	precipitation of au- roral electron in the energy range of 10- 100KeV	Dst	Not yet known	Quite intense	Auroral zone	Few minutes to few tens of minutes
SVA	Day time	Precipitation of electron in the range 30-300KeV to the D & lower E regions	Dst	Injection of intense cloud of energetic electron during auroral sub- storm expansion phase	0-5dB	Auroral zone	Half an hour to few hours
Relativistic Electron Precipitation	Noon	Hardness of electron energy spectra & ionization	Dst	Eastward drift- ing energies electron turn- ing into stable population with relatively hard spectrum (30KeV-1MeV)	Noticeable intensity	Auroral zone	Few Minutes
Westward Travelling Surge	Midnight	Rapid wavy motion of auroral arcs lying in the evening sec- tor	Dst	Auroral sub- storm	few dB	Auroral zone	few minutes to few tens of minutes
2).						LANICACTE	III





Absorption for different Solar wind speed and IMF z-component (A.J Kavanagh et al 2001)

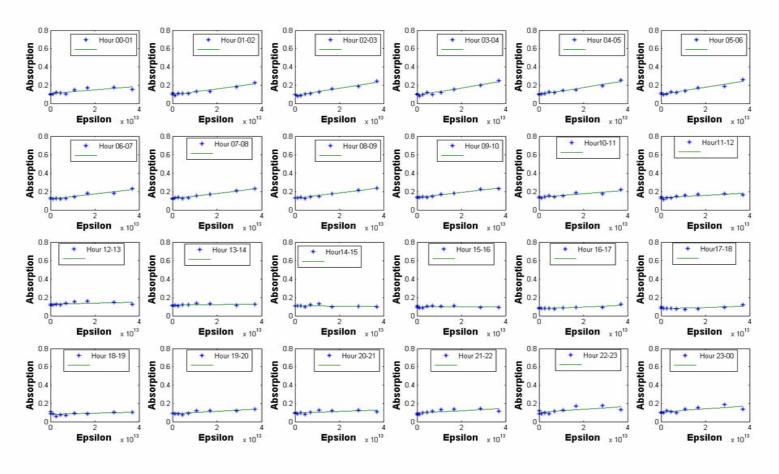
Absorption in zenithal beam Epoch 1995 to 2001 Arranged by Solar wind speed



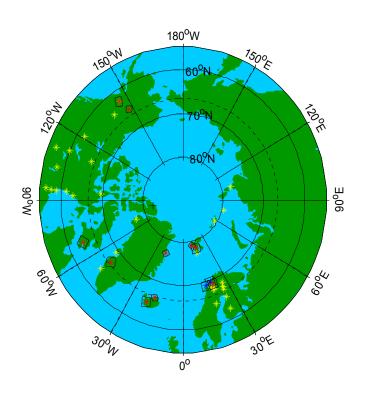
Solar Wind-Magnetosphere Coupling Functions

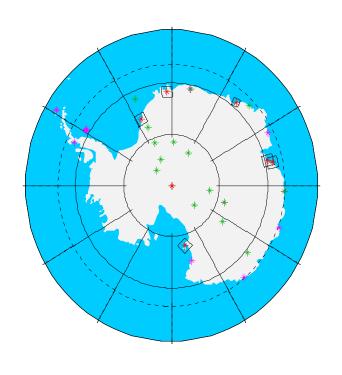
Aim: Quantifying transferred energy, momentum and Mass

S/N	Name	Coupling Function	Reference
1	I_B	VB_s	Burton et al [1975]
2	ε	$VB^2sin^4(\theta/2)l_o^2$	Perreault and Akasofu[1978]
3	Е	$VB_T sin^2(\theta/2)$	Kan & Lee [1979]
4	I_V	$n^{1/6}V^{4/3}B_Tsin^4(\theta/2)$	Vasyliunas et al [1982]
5	I_N	$V^{4/3}B_T^{2/3}sin^{8/3}(\theta/2)$	Newell et al. [1982]
6	I_{w}	$VB_T sin^4(\theta/2)$	Wygant et al [1983]
7	I_{SR}	$P^{1/2}VB_{T}sin^{4}(\theta/2)$	Scurry and Russell [1991]
8	I_{TL}	$P^{1/2}VB_{T}sin^{6}(\theta/2)$	Temerin and Li [2006]
9	F _k	$_{aV_{sw}}\{[(kB_y)^2 + B_z^2]^{1/2} - B_z\}^{1/2}$	Lyatsky et al [2007]
6 0	Р	$V^{\frac{4}{3}}B^{\frac{2}{3}}sin^{\frac{8}{3}}\left(\frac{\theta}{2}\right)$	Newell et al [2007]
	Department of Co	mmunication Systems	LANCASTER


Epsilon Parameter

- A quantitative measure of the energy input to the magnetosphere. The magnetosphere is regarded as a driven system rather than an unloading system
- Mathematically: ε=VB²sin⁴(θ/2)*²ergs⁻¹
- V= Solar Wind Velocity, B=Total IMF, θ=clock angle, ℓo=7RE
- (after Akasofu 1983)


Hourly variation of Epsilon with Absorption



Global Riometer Array

Summary

- Current models of absorption based on Kp values are somewhat unreliable since low absorption is possible during high geomagnetic activities
- An hourly AA model has been derived as a function of SW and Epsilon Parameter.
- There is a need to improve this still further by inclusion of other factors such as time history of SW instead of the instantaneous value.
- A truly global forecasting AA model is possible with available data from Global Riometer array (Gloria).

Thank You!

